Multi-Class Twitter Emotion Classification: A New Approach
نویسندگان
چکیده
منابع مشابه
Multi-class machine classification of suicide-related communication on Twitter
The World Wide Web, and online social networks in particular, have increased connectivity between people such that information can spread to millions of people in a matter of minutes. This form of online collective contagion has provided many benefits to society, such as providing reassurance and emergency management in the immediate aftermath of natural disasters. However, it also poses a pote...
متن کاملSMILES: Twitter Emotion Classification using Domain
Despite the widely spread research interest in social media sentiment analysis, sentiment and emotion classification across different domains and on Twitter data remains a challenging task. Here we set out to find an effective approach for tackling a cross-domain emotion classification task on a set of Twitter data involving social media discourse around arts and cultural experiences, in the co...
متن کاملSMILE: Twitter Emotion Classification using Domain Adaptation
Despite the widely spread research interest in social media sentiment analysis, sentiment and emotion classification across different domains and on Twitter data remains a challenging task. Here we set out to find an effective approach for tackling a cross-domain emotion classification task on a set of Twitter data involving social media discourse around arts and cultural experiences, in the co...
متن کاملHierarchical Classification for Solving Multi-class Problems: A New Approach Using Naive Bayesian Classification
A hierarchical classification ensemble methodology is proposed as a solution to the multi-class classification problem where the output from a collection of classifiers, arranged in a hierarchical manner, are combined to produce a better composite global classification (better than when the classifiers making up the ensemble operate in isolation). A novel topology for arranging the classifiers ...
متن کاملMulti-class classification: mirror descent approach
We consider the problem of multi-class classification and a stochastic optimization approach to it. We derive risk bounds for stochastic mirror descent algorithm and provide examples of set geometries that make the use of the algorithm efficient in terms of error in k.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Information Systems
سال: 2012
ISSN: 2249-0868
DOI: 10.5120/ijais12-450651